9 research outputs found

    Using mobility information to perform a feasibility study and the evaluation of spatio-temporal energy demanded by an electric taxi fleet

    Get PDF
    Half of the global population already lives in urban areas, facing to the problem of air pollution mainly caused by the transportation system. The recently worsening of urban air quality has a direct impact on the human health. Replacing today’s internal combustion engine vehicles with electric ones in public fleets could provide a deep impact on the air quality in the cities. In this paper, real mobility information is used as decision support for the taxi fleet manager to promote the adoption of electric taxi cabs in the city of San Francisco, USA. Firstly, mobility characteristics and energy requirements of a single taxi are analyzed. Then, the results are generalized to all vehicles from the taxi fleet. An electrificability rate of the taxi fleet is generated, providing information about the number of current trips that could be performed by electric taxis without modifying the current driver mobility patterns. The analysis results reveal that 75.2% of the current taxis could be replaced by electric vehicles, considering a current standard battery capacity (24–30 kWh). This value can increase significantly (to 100%), taking into account the evolution of the price and capacity of the batteries installed in the last models of electric vehicles that are coming to the market. The economic analysis shows that the purchasing costs of an electric taxi are bigger than conventional one. However, fuel, maintenance and repair costs are much lower. Using the expected energy consumption information evaluated in this study, the total spatio-temporal demand of electric energy required to recharge the electric fleet is also calculated, allowing identifying optimal location of charging infrastructure based on realistic routing patterns. This information could also be used by the distribution system operator to identify possible reinforcement actions in the electric grid in order to promote introducing electric vehicles

    The influence of BMSs on the characterization and modeling of series and parallel Li-ion packs

    Get PDF
    This work analyzes the effects of a BMS (battery management system) on the characterization and modeling of series and parallel connections of Li-ion cell packs. The Li-ion pack studied consists of four series modules connected in parallel. This pack has been characterized by means of charge, discharge and frequency tests. As a result of these tests, series and parallel influence on battery parameters have been determined. A model considering the effects of a BMS is established and compared with a model based on a single-cell approach. Experimental validations show that the single cell based approach gives poor results in comparison with a model that considers BMS effects

    Carbon-Free Electricity Generation in Spain with PV–Storage Hybrid Systems

    Get PDF
    Climate change motivated by human activities constitutes one of the main challenges of this century. To cut carbon emissions in order to mitigate carbon’s dangerous effects, the current energy generation mix should be shifted to renewable sources. The main drawback of these technologies is their intermittency, which will require energy storage systems to be fully integrated into the generation mix, allowing them to be more controllable. In recent years, great progress to develop an effective and economically feasible energy storage systems, particularly motivated by the recent rise of demand for electric transportation, has been made. Lithium-ion (Li-ion) battery prices have fallen near 90% over the past decade, making possible the affordability of electric vehicles and transforming the economics of renewable energy. In this work, a study on storage capacity demand previously presented as conference paper is expanded, including a deep analysis of the Spanish generation mix, the evaluation of the energy storage requirements for different low-carbon and carbon-free scenarios in Mainland Spain, and the calculation of the CO2 emissions’ reduction and the associated storage costs.This research was partially funded by eNeuron Project from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement number 957779

    Hybrid Modeling Procedure of Li-Ion Battery Modules for Reproducing Wide Frequency Applications in Electric Systems

    Get PDF
    In this chapter, a hybrid modeling procedure of Li-ion battery modules is presented. From experimental results, the parameters of an electrical circuit have been determined by means of time- and frequency-domain tests. In this way, the dynamic behavior of the battery-pack is modeled. The tests have been performed at the whole battery-pack, instead of a single-cell approach, in order to consider the packaging effects of multicell devices. The real performance of the battery-pack under dynamic applications associated with distribution grids has been simulated using a hardware-in-the-loop (HIL) experimental setup. According to simulation results, the hybrid model follows the battery-pack response with high accuracy

    Impacto de las políticas de autoconsumo y recarga del vehículo eléctrico en comunidades energéticas

    Get PDF
    Self-consumption is a key element to integrate renewable energies and foster consumer participation in the energy sector. To expand it, self-consumption regulation needs to incorporate policies such as shared self-consumption, energy communities, storage and electric vehicles. In this article, an optimization problem for the total cost of an energy community considering different self-consumption and electric vehicle management policies is presented. The problem is applied to a set of electric vehicle usage scenarios with diverse work schedules and daily consumptions. Results show that the involved policies have a greater impact on the community’s energy cost than the usage of the electric vehicles.El autoconsumo es una herramienta fundamental para integrar energĂ­as renovables y fomentar la participaciĂłn activa de los consumidores en el sector energĂ©tico. Para ello, la regulaciĂłn del autoconsumo debe expandirse, incorporando figuras como el autoconsumo compartido, las comunidades energĂ©ticas, el almacenamiento y los vehĂ­culos elĂ©ctricos. En este artĂ­culo se presenta un problema de optimizaciĂłn del coste energĂ©tico de una comunidad que considera diferentes polĂ­ticas de autoconsumo compartido y gestiĂłn del vehĂ­culo elĂ©ctrico. El problema se aplica a una comunidad de energĂ­a compuesta por cinco consumidores domĂ©sticos para escenarios de uso del vehĂ­culo elĂ©ctrico con diferentes horarios de trabajo y consumos diarios. Los resultados muestran que las polĂ­ticas involucradas tienen mayor impacto en el precio de la comunidad que el uso dado a los vehĂ­culos elĂ©ctricos

    Off-the-Shelf and Flexible Hybrid Frequency and Time Domain Experimental Architecture Setup for Electrochemical Energy Modules Testing under Realistic Operating Conditions

    No full text
    © 1986-2012 IEEE. This paper proposes a standard and flexible test bench architecture for the testing and modeling of electrochemical energy modules. It also presents a comprehensive methodology that enables to obtain accurate models under realistic operating conditions with a low computational cost. For this purpose, three different configuration modes of the experimental architecture setup are introduced. Finally, the test bench architecture and the experimental methodology proposed have been validated by the modeling and testing of a Li-ion battery pack and a supercapacitor module

    The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs

    No full text
    This work analyzes the effects of a BMS (battery management system) on the characterization and modeling of series and parallel connections of Li-ion cell packs. The Li-ion pack studied consists of four series modules connected in parallel. This pack has been characterized by means of charge, discharge and frequency tests. As a result of these tests, series and parallel influence on battery parameters have been determined. A model considering the effects of a BMS is established and compared with a model based on a single-cell approach. Experimental validations show that the single cell based approach gives poor results in comparison with a model that considers BMS effects

    Shared Self-Consumption Economic Analysis for a Residential Energy Community

    No full text
    Self-consumption is a growing public demand in an energy environment with growing electricity costs and decreasing photovoltaic installation costs. Shared self-consumption is an imperative aspect for bringing self-consumption into Multi-Family Residential Buildings (MRB), where most families live. Nevertheless, current legislation in most countries does not consider shared self-consumption or does not exploit its full potential; such is the case of Spain or Portugal. This paper will present a novel optimization problem for studying the economics of a shared self-consumption installation in a MRB (composed of five family demands, a PV installation and a battery) with the aim of reducing the total bill of the MRB during an entire year. The impact on energy communities of two different types of energy policies is analysed: the remuneration scheme for the surplus energy (net metering, net billing, and exclusive self-consumption policies) and the regulation for shared self-generated energy (demand-dependent, proportional output and no sharing). It is found that the regulation for the sharing energy can be more important that the remuneration scheme, which has been the traditional target of the self-consumption policy

    A Multi-Port Hardware Energy Meter System for Data Centers and Server Farms Monitoring

    No full text
    Nowadays the rationalization of electrical energy consumption is a serious concern worldwide. Energy consumption reduction and energy efficiency appear to be the two paths to addressing this target. To achieve this goal, many different techniques are promoted, among them, the integration of (artificial) intelligence in the energy workflow is gaining importance. All these approaches have a common need: data. Data that should be collected and provided in a reliable, accurate, secure, and efficient way. For this purpose, sensing technologies that enable ubiquitous data acquisition and the new communication infrastructure that ensure low latency and high density are the key. This article presents a sensing solution devoted to the precise gathering of energy parameters such as voltage, current, active power, and power factor for server farms and datacenters, computing infrastructures that are growing meaningfully to meet the demand for network applications. The designed system enables disaggregated acquisition of energy data from a large number of devices and characterization of their consumption behavior, both in real time. In this work, the creation of a complete multiport power meter system is detailed. The study reports all the steps needed to create the prototype, from the analysis of electronic components, the selection of sensors, the design of the Printed Circuit Board (PCB), the configuration and calibration of the hardware and embedded system, and the implementation of the software layer. The power meter application is geared toward data centers and server farms and has been tested by connecting it to a laboratory server rack, although its designs can be easily adapted to other scenarios where gathering the energy consumption information was needed. The novelty of the system is based on high scalability built upon two factors. Firstly, the one-on-one approach followed to acquire the data from each power source, even if they belong to the same physical equipment, so the system can correlate extremely well the execution of processes with the energy data. Thus, the potential of data to develop tailored solutions rises. Second, the use of temporal multiplexing to keep the real-time data delivery even for a very high number of sources. All these ensure compatibility with standard IoT networks and applications, as the data markup language is used (enabling database storage and computing system processing) and the interconnection is done by well-known protocols
    corecore